
Capturing Custom Link Semantics among Heterogeneous Artifacts and Tools

Hazeline U. Asuncion Richard N. Taylor
Institute for Software Research
University of California, Irvine

Irvine, California 92697-3455 USA
{hasuncion, taylor}@ics.uci.edu

Abstract

Automated techniques aid in minimizing the over-
head associated with the capture and maintenance of
trace links. However, many challenges to automated
traceability remain, such as linking heterogeneous
artifacts and capturing custom link semantics. In this
position paper, we propose a combination of tech-
niques, including prospective link capture, open hy-
permedia, and rules, in order to address these chal-
lenges and complement current automated techniques.
Our approach borrows ideas from e-Science, a domain
in which tracing data plays a crucial role in the re-
peatability of experiments.

1. Introduction

Researchers and practitioners agree that software
traceability can improve software development by in-
creasing accessibility to related artifacts [13, 15]. The
high overhead in establishing and maintaining trace
links [32] has prompted research in the automated re-
covery of trace links [27, 28, 36]. However, these
techniques fall short of linking to heterogeneous arti-
facts and capturing custom link semantics, such as the
trace relationship type or purpose of the link [20].

To address these difficulties, we propose a novel
combination of automated techniques for capturing
trace links, involving the prospective capture of links
along with concepts from open hypermedia and rules.
The prevalent approach to automatically capturing
trace links is to perform retrospective techniques that
recover trace links from existing artifacts. In contrast,
prospective trace link generation captures links in situ,
while artifacts are generated or modified, to enable the
capture of temporal and contextual relationships that
are not captured through other trace recovery tech-
niques. Open hypermedia concepts like first class n-ary
links and hypermedia adapters aid in modeling cap-
tured link semantics and in enabling traceability across

tool boundaries. Finally, externally pluggable rules
enable the automatic addition and maintenance of cus-
tom trace semantics.

Our approach borrows ideas from the domain of e-
Science, an area where traceability, referred to as data
provenance, plays a key role in the repeatability of
experiments. While traceability within this domain is
more constrained than traceability between artifacts in
software, we are able to glean insights that are gener-
ally applicable to software traceability.

We center our discussion on the mechanisms for
automatically capturing link semantics across artifacts
that are of varying levels of formality, abstraction, and
representation and that are generated by different tools.
While we do not concentrate on defining an ontology
for link semantics, we do focus on supporting user-
defined link semantics, similar to those in [20, 37].

2. The e-Science perspective

A domain that shares many similarities with soft-
ware engineering, e-Science is a burgeoning field
where scientific experiments are conducted on com-
puters. In silico experiments, performed on the com-
puter or via computer simulation [10], enable data
analysis on existing data as well as the formulation of
hypotheses to be tested in the laboratory [30]. The
field is characterized by distributed global collabora-
tions among scientists using large-scale data sets and
heterogeneous computational resources [34].

Like software development, an in silico experiment
also has a lifecycle. Interestingly, the phases in an in
silico lifecycle may be compared to the phases in a
software development lifecycle. Experiment design,
running, and publication are analogous to software
design and implementation, testing, and deployment.
(see Figure 1).

 Data provenance techniques in e-Science enable
tracing data products across an entire experiment life
cycle to support the repeatability of experiments. The

TEFSE’09, May 18, 2009, Vancouver, Canada
978-1-4244-3741-2/09/$25.00 © 2009 IEEE ICSE’09 Workshop1

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on June 14,2010 at 18:39:09 UTC from IEEE Xplore. Restrictions apply.

main approach of capturing data provenance is through
scientific workflows [38] since these not only capture
the individual workflow execution, but they also codify
the design of the experiment or scientific analysis.
While many data provenance challenges remain,
provenance systems have been used to further scien-
tific research [2, 14, 16, 39, 42]. Given this measured
success, insights from data provenance techniques can
potentially improve software traceability.

The following insights guide our approach.

2.1 Automated capture of data provenance in-
volves in situ recording of data manipulation

In e-Science, automated data provenance collection
takes place while data sets are being processed by
various transformation functions, which are usually
directed by a scientific workflow. Examples include
recording user interaction with data [7], recording
component interaction in an executing workflow [1],
recording service invocations [41], and recording
workflow execution [42]. Lower level recording is
also used, as in recording interactions between service
objects [18] or recording operating system level events
[8]. These events are stored in log files which are
automatically analyzed at a later stage.

2.2. There is a tradeoff between tool “open-
ness” and automatic semantic capture

“Openness” is the ability to capture provenance
among heterogeneous tools [18]. A higher level of
openness allows for the increased ability to capture
provenance across heterogeneous tools. However, a
higher level of openness also lowers the level of se-
mantics that can be automatically captured. For exam-
ple, CAVES [7] is not capable of capturing provenance
with external tools, but the provenance captured has a
high level of semantics since it is directly related to its
internal data analysis tool. On the other end of the
spectrum, PASS [8] has a high level of openness (i.e. it
can capture provenance across any tool via operating
system events), but the captured semantics is nil.

2.3. Reasoners aid in automatically inferring
relationships between scientific artifacts

Since the automated collection of data provenance
can potentially produce large amounts of data, some
provenance systems support reasoning about the col-
lected provenance information, i.e. the ability to ana-
lyze, query, and browse captured provenance [31].
Reasoners determine the type of relationship between
artifacts using the context, which can be broadly de-

fined as “anything that was true” during the experiment
[29]. The two kinds of contextual information in e-
Science are the provenance information captured dur-
ing an experiment and the external information sur-
rounding an experiment. The first kind aids in under-
standing how data sets are manipulated by computa-
tional objects. The types of relationships between sci-
entific objects may be classified as dependency, tem-
poral, or contributor relationships [18, 38]. The con-
text in an experiment frames assumptions about the
environment (e.g. hardware environment, loaded li-
braries) and how entities are related (e.g. “input data X
and intermediate data Y are fed into computation ob-
ject A to produce output data Z”). Meanwhile, the
contextual information surrounding an experiment
links the objects in an experiment to their real world
representation. This information may be categorized
as organizational (e.g. user name, hypothesis) and
knowledge-based (e.g. notes) [38]. The context may
also include the rationale behind the experiment [1].

Figure 1: In silico experiment lifecycle [38]

3. Applying insights to traceability

The preceding insights provide the basis for our ap-
proach of using prospective link capture with concepts
from open hypermedia and rules. Prospective link
capture enables the capture of links across artifacts
with varying levels of representation. Open hyperme-
dia enables the capture of links across tool boundaries.
Rules enable the capture of custom link semantics.
The details of our approach follow.

3.1 Prospective link capture

Automated capture of data provenance involves in
situ recording of data manipulation. Likewise, we pro-

2

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on June 14,2010 at 18:39:09 UTC from IEEE Xplore. Restrictions apply.

pose the prospective capture of trace links. The pro-
spective approach creates links as a side-effect to
stakeholders’ development tasks. Trace links can be
automatically added by analyzing user input events
such as keyboard and mouse events. Links can be cre-
ated between artifacts that are simultaneously or se-
quentially accessed. In contrast to existing retrospec-
tive techniques, the prospective approach enables the
capture of contextual information (e.g. causal relation-
ships) and temporal relationships between artifacts that
are not captured otherwise. We hypothesize that 1)
related artifacts are generated, edited, or accessed ei-
ther concurrently or sequentially of each other and 2)
the prospective approach yields usable links. Interest-
ingly, other research areas take a similar stance, stating
that the navigation path of a user among the artifacts
indicate how the artifacts are related to each other [35,
40]. Unlike information retrieval techniques that rely
on mining repository logs, this approach enables the
capture of links between artifacts regardless of whether
the related artifacts are modified or not. Since the pro-
spective capture of links is not dependent on textual
similarities between artifacts, this approach enables
links to be captured across heterogeneous artifacts (e.g.
between a design document and a video recording of
the deliberation over the design). Prospective link cap-
ture can be used in conjunction with rules to filter
noise and to automatically add semantic information.
Note that the prospective approach can be coupled with
a retrospective approach to create high quality links.

3.2 Open hypermedia

Concepts from open hypermedia can be used to in-
crease the “openness” of tools, facilitating the capture
and management of trace links between heterogeneous
artifacts. In e-Science, we observed that there is a
tradeoff between the level of openness and the level of
semantic capture. In our approach, we will try to over-
come this tradeoff by infusing “knowledge” in the
form of rules. Rules assign link semantics whenever a
pattern of user interaction with artifacts is detected (see
Section 3.3).

We use first class links with n-ary endpoints to rep-
resent semantically rich links; thus, links may contain
link metadata, endpoint metadata, and mechanisms for
managing link endpoints. The link metadata encodes
the trace relationship and the endpoints. The endpoint
metadata may include the native artifact editor and
timestamp of the most recent traversal. Mechanisms
for managing link endpoints include the use of a spe-
cialized search engine such as [5] to locate the relevant
portions within an artifact or the use of a notification
wrapper to send modification events to related artifacts

(see Figure 2). Notification adapters can be used to
automatically update link metadata (e.g. update end-
point status to obsolete when all bug reports related to
a component are closed).

Figure 2: Open hypermedia

We also leverage existing tool capabilities by inte-

grating them into an open hypermedia system; hence
we are currently building a representative set of tool-
specific adapters that either leverage the native hyper-
text capabilities already present in some tools (e.g.
Adobe Acrobat, MS Word) or may be custom built
through plug-ins, macro programs, or other extension
mechanisms (e.g. Eclipse). We believe that building
these adapters will provide an effective means for trac-
ing across heterogeneous tool boundaries.

3.3 Rules

Reasoners in data provenance systems use contex-
tual information to infer relationships between pieces
of data. Similarly, we propose using rules to infer rela-
tionships between artifacts. Since the context can un-
cover the assumptions made when artifacts are gener-
ated or modified, it is important to take advantage of
the different types of context: organization-specific,
project-specific, and role-specific (e.g. “Architects
create use cases during requirements analysis”). Rules
specified by users can encode this contextual informa-
tion, and these rules can be used to 1) guide the pro-
spective capture of links and 2) automatically identify
relationship types between artifacts. For instance, a
rule may check if a component is selected in a design
diagram and if the user enters information into a Wiki
during the “record” mode. If these conditions are met,
then a trace link between the component and the Wiki
page can be captured, with the relationship type “ra-
tionale”. Since users can specify custom rules, we
hypothesize that this approach increases the relevancy
of captured links to the user and/or development tasks.
Because rules can guide the prospective capture of
links, less irrelevant links will be captured.

4. Related work

Automatically capturing link semantics between
different artifacts has been tackled by the areas of natu-

3

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on June 14,2010 at 18:39:09 UTC from IEEE Xplore. Restrictions apply.

ral language processing (NLP) and information re-
trieval (IR). For instance, Basili et al. use co-
occurrences of concepts in documents to generate
typed hyperlinks [6]; Spanoudakis et al. use rules to
detect patterns of terms to create links between re-
quirements specifications, use cases, and object model,
all of which have text representations [36]; Jiang et al.,
Lucia et al., and Marcus and Maletic use latent seman-
tic indexing to identify links between documents [25,
27, 28]; Camacho-Guerrero et al. use NLP techniques
with latent semantic indexing to automatically create
semantic hyperlinks [9]. These approaches are geared
toward the recovery of link semantics based on the
textual content of the artifacts. We aim to trace arti-
facts that are not only represented as text, by using the
user’s interaction with artifacts as the basis for creating
links. Our approach can also be nicely integrated with
these text-based techniques.

Capturing links across different artifacts and tools
has also been tackled by various research areas. One
class of program comprehension (PC) tools, recom-
mender systems [11, 22, 35], uses software repository
mining to automatically identify possible links within
code and between code and other artifacts. For exam-
ple, Hipikat [11], uses various sources (e.g. email ar-
chives, software repositories, activity logs) to create
links between code and other artifacts. Meanwhile,
Jazz, a collaborative software development tool, cre-
ates links between the current work context and files
from collaboration tools (e.g. source code with chat)
[23]. Software Concordance, an open hypermedia tool,
links source code and documentation using a uniform
object model [19]. Finally, Infinité, enables linking
across various artifacts by translating the artifacts into
a homogeneous representation and creating links
within this environment [3]. While these approaches
use different linking heuristics, none allows users to
specify their own custom linking heuristics.

Recording user interaction with artifacts has also
been studied in different research areas. Computer
human interaction and computer-supported cooperative
work employ user interaction to raise awareness [21,
33, 40]. Recently, the PC community has studied the
capture of user interaction to aid in program compre-
hension: using a team’s interaction with the code to
create links between source code files [12], using a
developer’s navigation patterns between an IDE and a
browser to create links between code and documenta-
tion [17], and using navigation patterns in the code to
create links between tasks and source code [26, 43].
The recording of user interaction in these different
research areas suggests that this is a viable approach to
capturing links between artifacts. While PC techniques
have focused on user interaction with the artifacts rep-
resented as text, namely source code, we posit that

links can also be created across heterogeneously repre-
sented artifacts. We can use the PC linking heuristics
as a starting point for creating links between heteroge-
neously represented artifacts.

5. Challenges and research directions

We have implemented a traceability tool based on
these ideas, within ArchStudio4 [4, 24]. While initial
results are promising, we are investigating whether the
prospective approach can create links with an accept-
able level of accuracy. The standard metrics for evalu-
ating automated traceability systems are precision and
recall [28], and they have mainly been applied to retro-
spectively captured links. One potential difficulty with
these metrics is that they rely on labels that specify
whether two artifacts should be related. However, the
relevancy between two artifacts may differ with differ-
ent users. In our approach, users are allowed to specify
custom rules, which can potentially boost precision.
Furthermore, the user’s sequence of interactions with
the system could affect the recall. We conjecture that
combining prospective capture with retrospective cap-
ture may increase both precision and recall rates. An-
other important research question is “Where is the
threshold by which captured links are usable and can
support development tasks for users?” In addition, it is
important to use link accuracy metrics that also meas-
ure the correctness of assigned link semantics.

Since overhead in capturing trace links plays a ma-
jor role in the lack of adoption of a traceability tech-
nique [32], we are studying whether the overhead in-
curred with our approach is within an acceptable
threshold for users. We are interested in studying two
specific types of overhead: overhead associated with
extending and customizing the tool (e.g. creating tool
adapters, creating custom rules) and overhead associ-
ated with using the tool (e.g. applying rules, filtering
noise). One approach to reducing overhead is to inte-
grate our prospective capture technique with retrospec-
tive techniques and assign higher link quality to links
captured using multiple techniques, in order minimize
the manual post-analysis of links.

6. Acknowledgements

Effort funded by the US Nat’l Science Foundation
grants IIS-0205724, CNS-0438996, & CCF-0820222.

7. References

[1] Altintas, I., Barney, O., et al. Provenance Collection Sup-
port in the Kepler Scientific Workflow System. In Int’l
Provenance & Annotation Workshop (IPAW). Chicago, 2006.

4

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on June 14,2010 at 18:39:09 UTC from IEEE Xplore. Restrictions apply.

[2] Altintas, I., Barney, O., et al. Accelerating the Scientific
Exploration Process with Scientific Workflows. Journal of
Physics: Conf Series. 46(1), p. 468-78, 2006.
[3] Anderson, K.M., Sherba, S.A., et al. Towards Large-
Scale Information Integration. In ICSE. Orlando, FL, 2002.
[4] Asuncion, H. Towards Practical Software Traceability. In
ICSE Doctoral Symp. Leipzig, Germany, 2008.
[5] Bajracharya, S., Ngo, T., et al. Sourcerer: A Search En-
gine for Open Source Code Supporting Structure-Based
Search In OOPSLA '06: Companion to the 21st ACM SIG-
PLAN Conf on Object-Oriented Programming Systems, Lan-
guages, and Apps. 681-682, 2006.
[6] Basili, R., Pazienza, M.T., et al. Inducing Hyperlinking
Rules in Text Collections. In Recent Advances in Natural
Language Processing. p. 131-140, Borovets, Bulgaria, 2003.
[7] Bourilkov, D. THE CAVES Project. Int’l Journal of
Modern Physics. 20, p. 3889-3892, 2005.
[8] Braun, U., Garfinkel, S., et al. Issues in Automatic Prove-
nance Collection. In IPAW. Chicago, IL, 2006.
[9] Camacho-Guerrero, J.A., Carvalho, A.A., et al. Clustering
as an Approach to Support the Automatic Definition of Se-
mantic Hyperlinks. In 18th Conf on Hypertext and Hyperme-
dia. UK, 2007.
[10] Cavalcanti, M.C., Targino, R., et al. Managing Struc-
tural Genomic Workflows Using Web Services. Data &
Knowledge Eng. 53(1), p. 45-74, 2005.
[11] Cubranic, D., Murphy, G.C., et al. Hipikat: a Project
Memory for Software Developmt. TSE. 31(6) p446-65, 2005.
[12] DeLine, R., Czerwinski, M., et al. Easing Program
Comprehension by Sharing Navigation Data. In 2005 IEEE
Symp on Visual Languages and Human-Centric Comp. 2005.
[13] Domges, R. and Pohl, K. Adapting Traceability Envi-
ronments to Project Specific Needs. CACM. 41(12), p. 54-62,
1998.
[14] Ellison, A.M., Osterweil, L.J., et al. Analytic Webs Sup-
port the Synthesis of Ecological Data Sets. Ecology. 87(6), p.
1345-1358, June, 2006.
[15] Evans, M. SPMN Director Identifies 16 Critical Soft-
ware Practices CrossTalk, Journal of Defense S. Eng. 2001.
[16] Freire, J., Silva, C.T., et al. Managing Rapidly-Evolving
Scientific Workflows. In IPAW. Chicago, IL, 2006.
[17] Goldman, M. and Miller, R.C. Codetrail: Connecting
Source Code and Web Resources. In Visual Languages and
Human-Centric Computing. 2008.
[18] Groth, P., Miles, S., et al. Recording and Using Prove-
nance in a Protein Compressibility Experiment. In 14th IEEE
Int’l Symp on High Performance Distributed Computing.
NC, 2005.
[19] Gupta, S.C., Nguyen, T.N., et al. The Software Concor-
dance: Using a Uniform Document Model to Integrate Pro-
gram Analysis and Hypermedia. In 10th Asia-Pacific Soft-
ware Eng Conf. 2003.
[20] Hayes, J. and Dekhtyar, A. Grand Challenges for
Traceability. Center of Excellence for Traceability, Tech
Report COET-GCT-06-01-0.9, 2007.
[21] Hill, W.C., Hollan, J.D., et al. Edit Wear and Read
Wear. In SIGCHI Conf on Human Factors in Computing
Systems. CA, 1992.
[22] Holmes, R. and Murphy, G.C. Using Structural Context
to Recommend Source Code Examp. In ICSE. St Louis 2005.

[23] Hupfer, S., Cheng, L.-T., et al. Introducing Collabora-
tion into an Application Development Environment. In
CSCW. Chicago, IL, 2004.
[24] Institute for Software Research. ArchStudio 4. http://
www.isr.uci.edu/projects/archstudio/, UC Irvine, 2006.
[25] Jiang, H.-y., Nguyen, T.N., et al. Traceability Link Evo-
lution Management with Incremental Latent Semantic Index-
ing. In Proc. of the 31st Annual International Computer
Software and Applications Conference. 2007.
[26] Kersten, M. and Murphy, G.C. Mylar: A Degree-of-
Interest Model for IDEs. In 4th Int’l Conf on Aspect-oriented
Software Development. p. 159-168, Chicago, IL, 2005.
[27] Lucia, A.D., Oliveto, R., et al. Adams Re-trace: Trace-
ability Link Recovery via Latent Semantic Indexing. In
ICSE. Leipzig, Germany, 2008.
[28] Marcus, A. and Maletic, J.I. Recovering Documentation-
To-Source-Code Traceability Links Using Latent Semantic
Indexing. In ICSE. Portland, OR, 2003.
[29] Miles, S., Groth, P., et al. The Requirements of Re-
cording and Using Provenance in e-Science Experiments.
Elec. & Comp Science, Univ of Southampton, T. Rep, 2005.
[30] Oinn, T., Greenwood, M., et al. Taverna: Lessons in
Creating a Workflow Environment for the Life Sciences.
Concurrency and Computation: Practice and Experience.
18(10), p. 1067-1100, 2006.
[31] Rajbhandari, S. and Walker, D.W. Support for Prove-
nance in a Service-based Computing Grid. In e-Science All-
Hands Meeting Nottingham, UK, 2004.
[32] Ramesh, B., Powers, T., et al. Implementing Require-
ments Traceability: A Case Study. In RE '95. p. 89-95, York,
UK, 1995.
[33] Schummer, T. Lost and Found in Software Space. In
34th Annual Hawaii Int’l Conf on System Sciences. 2001.
[34] Senior, I. e-Science Definitions. http://e-
science.ox.ac.uk/ public/general/definitions.xml, 2002.
[35] Singer, J., Elves, R., et al. NavTracks: Supporting Navi-
gation in Software Maintenance. In 21st Int’l Conf on Soft-
ware Maintenance. 2005.
[36] Spanoudakis, G., Zisman, A., et al. Rule-based Genera-
tion of Requirements Traceability Relations. Journal of Sys-
tems and Software. 72(2), p. 105-27, 2004.
[37] Spanoudakis, G. and Zisman, A. Software Traceability:
A Roadmap. Advances in Software Eng and Knowledge Eng.
Chang, S.K. ed. 3, World Scientific Publishing, 2005.
[38] Stevens, R., Zhao, J., et al. Using Provenance to Manage
Knowledge of In Silico Experiments. Briefings in Bioinfor-
matics. 8(3), p. 183-94, 2007.
[39] Stevens, R.D., Tipney, H.J., et al. Exploring Williams–
Beuren Syndrome Using myGrid. Bioinformatics. 20(1),
pi303-10.
[40] Wexelblat, A. and Maes, P. Footprints: History-rich
Tools for Information Foraging. In SIGCHI.Pittsburgh, 1999.
[41] Zhao, J., Goble, C., et al. Semantically Linking and
Browsing Provenance Logs for E-science. In 1st Int’l Fed-
eration for Info. Processing Conf. Paris, France, 2004.
[42] Zhao, Y., Wilde, M., et al. Applying the Virtual Data
Provenance Model. In IPAW. Chicago, IL, 2006.
[43] Zou, L., Godfrey, M.W., et al. Detecting Interaction
Coupling from Task Interaction Histories. In 15th IEEE Int’l
Conf on Program Comprehension. 2007.

5

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on June 14,2010 at 18:39:09 UTC from IEEE Xplore. Restrictions apply.

