
Modeling PLA Variation of Privacy-Enhancing Personalized Systems

Scott A. Hendrickson∗, Yang Wang∗, André van der Hoek, Richard N. Taylor, Alfred Kobsa
Institute of Software Research
University of California, Irvine

Irvine, CA 92697 USA
{shendric, yangwang, andre, taylor, kobsa}@uci.edu

Abstract

Privacy-enhancing personalized (PEP) systems address
individual users’ privacy preferences as well as privacy
laws and regulations. Building such systems entails model-
ing two different domains: (a) privacy constraints as man-
dated by law, voluntary self-regulation, or users’ individ-
ual privacy preferences, and modeled by legal profession-
als, and (b) software architectures as dictated by available
software components and modeled by software architects.
Both can evolve independently, e.g., as new laws go into
effect or new components become available. In prior work,
we proposed modeling PEP systems using a product line ar-
chitecture (PLA). However, with an extensional PLA, these
domain models became strongly entangled making it diffi-
cult to modify one without inadvertently affecting the other.
This paper evaluates an approach towards modeling both
domains within an intensional PLA. We find evidence that
this results in a clearer separation between the two domain
models, making each easier to evolve and maintain.

1 Introduction

To provide personalized services such as customized rec-
ommendations, a personalized website collects and uses
users’ personal data, which raises various privacy concerns
[17]. We use the term privacy constraints to denote users’
privacy preferences as well as privacy laws and regulations
that are in effect. We call personalized systems that ad-
dress these privacy constraints privacy-enhancing person-
alized (PEP) systems. Modeling such systems concerns ex-
pressing two different domain models: privacy constraints
and their interdependencies, as managed by legal profes-
sionals; and the structural features of a software architec-
ture, as managed by software architects. We refer to these
models as the privacy model and software model, respec-

∗First authors listed in alphabetical order.

tively. Both can evolve independently: The privacy model
can evolve as new laws or self-regulations are put into effect
or new user privacy preferences arise. The software model
can evolve when new components become available.

In prior work [28], we found that privacy constraints may
affect the admissibility of certain components or features
in a PEP system. Therefore, different sets of privacy con-
straints may lead to different architectures of a PEP system.
Based on this finding, we proposed modeling a PEP system
as a product line architecture (PLA) [29]. Doing so allows a
PEP system to dynamically select a product architecture for
each user based on their current privacy constraints, which
can change over time.

Currently, PLA modeling approaches are predominantly
extensional, i.e., they model a single, monolithic archi-
tecture that simultaneously represents all possible prod-
ucts using variation points and guards of some form, e.g.,
[27][13][8][25]. These approaches could be viewed as
“configurable architectures”, where an architect obtains an
individual product architecture by resolving each variation
point based upon a selection of desired attributes. While
these approaches adequately model PLA variation, they suf-
fer from a sizable mismatch between conceptual variability
(i.e., the features through which architects logically view
and interpret product differences) and actual variability (i.e.,
the modeling constructs through which the logical differ-
ences must be expressed). As a result, the actual model ex-
hibits a high degree of redundancy, scattering and tangling
of the conceptual model it represents making it difficult to
interpret and modify [14].

Alternatively, intensional [5] approaches are gaining
ground, e.g., [14][2][1][7]. With intensional approaches,
product architectures are composed from different modeling
constructs that represent features at some level. Our previ-
ous work presented an intensional approach where an ar-
chitect composes product architectures from a collection of
change sets and is guided by constraints expressed as rela-
tionships [14]. Together, change sets and relationships form
the basis for modeling features and feature models.

Our earlier work found that the structural features of a
feature model are better expressed using change sets and
relationships than the modeling constructs of an extensional
approach [14]. This paper extends our earlier work in two
ways. First, we apply the intensional approach to a do-
main where a conceptual model exists, that of the privacy
constraints, and where product configurations cannot prac-
tically be predefined and must instead be dynamically cre-
ated. Second, we show evidence that a PLA-based PEP sys-
tem is easier to maintain when represented using an inten-
sional approach than when represented using an extensional
approach.

In the remainder of this paper, we briefly explain sev-
eral background concepts in Section 2. We then describe
the motivating example PEP system used for our compar-
ative analysis in Section 3. Thereafter, we present how to
model the system extensionally and intensionally in Sec-
tion 4. Subsequently, in Section 5, we introduce three com-
mon evolution scenarios of PEP systems and show how both
modeling approaches would adapt to these changes. We
then discuss insights gained from our evaluation in Sec-
tion 6. Finally, we discuss related work in Section 7 and
conclude in Section 8.

2 Background

The work presented in this paper relies on concepts from
personalization and privacy, software architecture and con-
figuration management. We introduce these concepts here.

2.1 Personalization and Privacy

Advantages of web personalization have been demon-
strated for both online customers (e.g., getting personalized
content) and vendors (better customer retention) [6]. How-
ever, numerous opinion polls and empirical studies have
revealed that Internet users have considerable concerns re-
garding the disclosure of their personal data to websites,
and the monitoring of their Internet activities (see [17] for
an overview). Most privacy laws that have emerged in re-
sponse are applicable only within the boundaries of the cor-
responding country, e.g., Germany. However, some privacy
laws may be applicable beyond a country’s border so long
as the services are provided to its citizens and permanent
residents, e.g., the Australian privacy law. Laws, along with
industry self-regulation and user privacy preferences, place
requirements on the collection, storage and processing of
personal data. These may involve proper data acquisition,
mandatory purpose of use notifications, restrictions on per-
missible data transfers (e.g., to third parties and/or across
national borders) and requirements for certain data process-
ing (e.g., organization, modification and destruction). Other

provisions specify user opt-ins (e.g., asking for their con-
sent before collecting their data), opt-outs, informing users
about their rights (e.g., regarding the disclosure of the pro-
cessed data), adequate security mechanisms (e.g., access
control), and the supervision and audit of personal data pro-
cessing [28]. Finally, interdependencies between privacy
constraints may also exist, e.g., privacy requirements from
European Union (EU) directives must be implemented by
all of its member states in their own privacy laws.

2.2 Software Architectures

Software architectures provide high-level abstractions
for representing a system’s structure, behavior, and key
properties. These are generally expressed using an archi-
tecture description language (ADL) [19], which captures
concepts such as the elements from which systems are built,
interactions among those elements, patterns that guide their
composition, and constraints on these patterns [23].

Whereas “normal” software architectures define the ar-
chitectural structure of a single software system, a product
line architecture (PLA) simultaneously defines the architec-
tural structure for a set of closely-related systems or prod-
ucts [4]. As such, it must provide a basis by which an archi-
tect may understand and manipulate the commonalities and
variabilities existing among each product constituting the
PLA and also must support the creation of each individual
product architecture from the PLA, for instance to deploy
an individual product to a client.

A number of ADLs support the specification of prod-
uct line architectures, typically distinguishing core elements
from variation points. Variation points, architectural ele-
ments themselves, specify places in the PLA where differ-
ences exist among specific product architectures. For in-
stance, Koala uses switches [27], xADL 2.0 [8] and Ménage
[13] allow optional, variant, and optional variant elements,
and COVAMOF utilizes optionals, alternatives, optional
variants, variants, and values [25]. Most express these dif-
ferences in some form of configuration or constraint lan-
guage and promote commonly-used rules to first-class lan-
guage constructs. For instance, xADL 2.0 uses Boolean ex-
pressions and Koala has a language construct for switches
that route connections to one of several alternative inter-
faces.

2.3 Configuration Management

The discipline of configuration management (CM) has
been primarily concerned with capturing the evolution of a
software system at the source code level [10]. For this, it
has extensive and detailed mechanisms and procedures for
storing multiple versions of code and allowing multiple de-
velopers parallel access to that code [5]. Automated conflict

2

detection and merge routines help in reconciling overlap-
ping changes that may arise as a result of parallel develop-
ment [20].

Of interest to this paper are the concepts of extensional
and intensional versioning [5]. In extensional versioning,
the configuration management system focuses on managing
versions of artifacts that result after making changes. Typi-
cally, a version graph is used to relate different versions of
an artifact; developers retrieve a particular version, modify
it, and then add the new version to the graph when complete.

In contrast, intensional versioning makes changes a first
class entity, inverting the relationship between versions
and changes [5]. Instead of ensuring that each version
is uniquely stored and accessible, intensional versioning
stores each change as a change set (a “delta”) independently
from the other changes. So, instead of requesting a ver-
sion of an artifact, developers retrieve an artifact by request-
ing a series of change sets from which a “version” is con-
structed. Similarly, after modification of this “version”, the
delta between this new and the original version is stored as
an individually-identifiable change set. This has the advan-
tage that new incarnations of an artifact can be composed
by mixing and matching different change sets.

3 Motivating Example

As a motivating example, consider an online movie rec-
ommender system1. To make personalized recommenda-
tions, our system can utilize three features: (1) cross-site
tracking, to observe what other websites a user visits, (2)
single session logs, which provide information about the
pages a user has visited on our website during the user’s cur-
rent session, and (3) multiple session logs, which addition-
ally provide information about the pages a user has visited
on our website in the past, during previous sessions. The
first feature is optional while the singe and multiple session
log features are alternatives, meaning that only one may be
selected. In this paper, we refer to these features and the
feature model that binds them, collectively as the software
model.

Being a PEP system, our example also has a privacy
model, which defines the various privacy constraints placed
on the system according to the users stated preferences and
location. For our example, we chose to deploy the system in
Germany, the United Kingdom, and the United States. The
privacy model must ensure that the product obtained from
the software model adheres to the individual laws of each
country.

Initially, our system’s privacy model recognizes two con-
ditions for German citizens2:

1Inspired by the MovieLens system (www.movielens.org)
2Based on the German Telemedia law [9]

• Cross-cite tracking is prohibited, without consent.

• Multiple session logs are prohibited, without consent.

Upon navigating to our website, a user can explicitly spec-
ify their privacy preferences (possibly indicating consent)
for a set of pre-defined options, or leave these preferences
unspecified.

Our system dynamically generates a product tailored to
each individual user’s personal privacy constraint prefer-
ences. It also ensures that the resulting product adheres to
the privacy laws and regulations in effect for the user, as
indicated by the user’s location. If preferences are not ex-
plicitly stated, the system chooses features that provide the
most information to the system, which are legally allowed
by the user’s location. Thus, German citizens without ex-
plicit preferences are provided a system with the single ses-
sion logs feature while citizens from the United Kingdom
and the United States without explicit preferences are pro-
vided systems with the cross-site tracking and multiple ses-
sion logs features. Preferences, of course, if stated, override
these defaults when the law allows.

4 Extensional and Intensional Modeling

In this section, we model our example PLA both ex-
tensionally and intensionally, noting intricacies of both ap-
proaches. We conclude this section with a reflection on the
two modeling approaches.

4.1 Modeling Extensionally

Taking an extensional modeling approach, we use vari-
ation points to denote the places where variabilities occur
in the PLA. The resulting software model for our system
is shown in Figure 1. In this figure, core elements belong-
ing to all product architectures are shown as solid boxes or
lines, optional elements as dashed boxes or lines, and vari-
ant elements as large boxes containing the variants. Addi-
tionally, but not shown, each variation point is annotated
with a Boolean guard that indicates when that element is to
be included in or excluded from a particular product archi-
tecture.

To model the privacy model of our system, we define the
following variables and their possible values:

Country = Germany | UK | USA
SessionLogPref
= single | multiple | unspecified

CrossSiteTrackingPref
= allow | disallow | unspecified

These variables are used in the Boolean guard expressions
of each variation point. For example, the Boolean guard

3

Figure 1. Extensional Model

for the “Cross-site Tracking” component (using a Java-like
notation) is:

CrossSiteTrackingPref == "allow"
||(CrossSiteTrackingPref=="unspecified"

&& Country != "Germany")

The above guard states that the architectural element is to
be included when the user has explicitly allowed it, or when
the user has not stated a preference and the user is in a coun-
try other than Germany. A product is selected by evalu-
ating each variation point’s Boolean guard against values
assigned to each variable, indicating whether the variation
point is included in, or excluded from, the desired product.

As we can see, the software model and privacy model
immediately become entangled as the privacy model is ex-
pressed in terms of the impact of a user’s preferences and lo-
cation on each and every variation point in the system. Fur-
thermore, as features overlap in the extensional approach,
guards become more complex. For instance, the “Tracking-
based Recommendations” component should be included
when any of the three features (“Single Session Logs”,
“Multiple Session Logs”, and “Cross-Site Tracking”) are
enabled. The resulting guard is:

(SessionLogsPref == "single"
||(SessionLogsPref == "unspecified"

&& Country == "Germany"))
||(SessionLogsPref == "multiple"
||(SessionLogsPref == "unspecified"

&& Country != "Germany"))
||(CrossSiteTrackingPref == "allow"
||(CrossSiteTrackingPref=="unspecified"

&& Country != "Germany"))

From these example guards, three problems become ap-
parent. First, information is scattered. The clause in the first

example is the condition for selecting the cross-site track-
ing feature. However, the same clause is repeated at the
end of the second example. For an architect to determine
all elements affected by that feature, he must examine each
and every guard throughout the architecture. Second, in-
formation is tangled. The second example contains three
main clauses, each capturing the condition for selecting the
“Single session logs”, “Multiple session logs”, and “Cross-
site Tracking” features, respectively. To modify this guard,
an architect must mentally extract these concepts, modify
them, and then recombine them to update the guard’s ex-
pression. Finally, information is redundantly expressed.
The links and connectors surrounding the “Tracking-based
Recommendations” component have the same guard, be-
cause they are included or excluded in unison with the com-
ponent. These factors make interpreting and updating an
extensional PLA a tedious and error-prone task.

A deployed system using our extensional PLA example
would have a complete copy of the entire PLA as presented
above. A new user visiting the website would be prompted
for her privacy preferences. Once obtained, these values
and the users country would be directly plugged into the
variables used in the PLA guards. These guards would be
resolved to obtain a specific system configuration matching
the user’s privacy constraints, which would then be instan-
tiated for the user. If the user changes her privacy prefer-
ences, a potentially different system will then be instanti-
ated for the user.

Modeling the entire system extensionally requires a total
of 3 variables: 2 for the users preferences regarding each
feature and 1 for the user’s country. The model has 10 vari-
ation points (the “Session Logs” component and each of its
variants have their own Boolean guard) and there are a total
of 5 unique Boolean guards throughout the model.

4.2 Modeling Intensionally

Instead of using variation points and guards, the inten-
sional modeling approach uses change sets and relation-
ships to represent the PLA. We chose to use four categories
of change sets in our intensional model: (1) feature change
sets and relationships which are used to model the software
model, (2) preference change sets and (3) country change
sets which are used to model the privacy model, and (4)
mapping change sets which are used to connect the two
models.

The feature change sets, prefixed by “Feature”, are used
to model the structural features of the software system, as
shown on the left-hand-side of Figure 2. For each element in
a feature change set, an annotation with a “+” means that the
element is added by the change set and an “x” means that
the element is removed. The presence of a clear, dashed,
“ghost” element indicates that the change set references, but

4

does not actually modify, that particular element. For in-
stance, the “Feature: Single Session Logs” change set adds
the “Single Session Logs” component, its interface, and a
link to an interface on the “Tracking Connector”. However,
it does not modify the “Tracking Connector” itself.

These feature change sets are merged together to com-
pose different product architectures. The “Feature: Base-
line” change set adds elements common to all products
while the three feature change sets on the top row of the
left-hand-side of Figure 2 add elements that are unique to
their respective features. In the intensional model, feature
overlap is modeled as a separate change set that adds the el-
ements common to both features. The “Feature: Tracking-
based Recommendations” change set is such a change set,
adding, for instance, the “Tracking-based Recommenda-
tions” component needed by all three features. A relation-
ship is used to ensure that this change set is included when-
ever any of the feature change sets are included.

The entire collection of change sets and relationships is
shown on the right-hand-side of Figure 2 in a “variability
spreadsheet”. Each row represents a change set and each
column to the right of the “Change Set” column represents a
relationship (numbered from 1 to 15). Note that change sets
and relationships are grouped according to the two domain
models from which they originate: change sets and relation-
ships for the software model are in the lower-right quadrant
of the spreadsheet and managed solely by software archi-
tects, as indicated by the “Software” labels. Change sets
and relationships for the privacy model as managed by legal
professionals are in the upper-left quadrant of the variability
spreadsheet, as indicated by the “Privacy” labels.

Change sets added by legal professionals that are used
in the privacy model are empty, only serving as “place
holders” or “switches” for the privacy-related concepts they
wish to model. These privacy-related change sets include
the preference change sets prefixed by “Pref” that represent
user preferences and the country change sets prefixed by
“Country” that model users’ countries.

The mapping change sets prefixed by “Mapping” serve
as the common terms of discourse through which legal pro-
fessionals and their privacy model interact with software ar-
chitects and their software model. Professionals from each
domain must agree on the meaning of these mapping change
sets. Legal professionals add relationships to ensure that a
selection of a country and preferences imply the appropriate
set of mapping change sets, shown in the upper-left quad-
rant of the “variability spreadsheet” in Figure 2. Software
architects add relationships to ensure that a selection of
mapping change sets imply the appropriate feature change
sets, shown in the lower-right quadrant of the “variability
spreadsheet” in Figure 2.

Several representative relationships in Figure 2 are read
as follows:

Relationship 4 expresses an internal mapping within the
privacy model. In this case, the legal professionals
chose to have a country selection indicate a default
set of preferences that adhere to each country’s pri-
vacy concerns. These, of course may be overridden
by the users’ actual preferences. As an AND relation-
ship type, this relationship reads: if the “Country: Ger-
many” change set is selected, and the user has not se-
lected the “Pref: Multiple Session” preference change
set, then the “Pref: Single Session” preference change
set should be selected.

Relationship 2 expresses a mapping from the privacy
model to the mapping change sets that are common
to both models. As an OR relationship type, this rela-
tionship ensures that when the “Pref: Single Session”
change set is selected, the “Mapping: Disallow Multi-
ple Session Logs” change set is also selected.

Relationship 12 expresses a mapping from the mapping
change sets to the software model. As an OR rela-
tionship type, this relationship ensures that when the
“Mapping: Disallow Multiple Session Logs” change
set is selected, the “Feature: Multiple Session Logs”
change set is not selected and the “Feature: Single Ses-
sion Logs” change set is selected.

Relationship 10 expresses an internal mapping within the
software model. It captures the dependency that the
tracking-based change sets on the top row of the left-
hand-side of Figure 2 have on the “Feature: Tracking-
based Recommendations” change set, which adds ele-
ments common to those three features. As an OR rela-
tionship type, this relationship ensures that when any
of the three feature change sets are selected, the “Fea-
ture: Tracking-based Recommendations” change set is
also selected.

Note that in Figure 2 the upper-right and lower-left quad-
rants of the variability spreadsheet are empty, indicating
no cross-over occurs between these two models, other than
through the mapping change sets. This is because the two
domain models remain independent, interconnected only
through the common mapping change sets. As such, profes-
sionals in each domain may freely modify the change sets
and relationships used to capture the concepts relevant to
their respective domains. Interaction is only needed when
mapping change sets are added, removed, or their purposes
are changed.

Our intensional PLA would be deployed in a similar
fashion as the extensional PLA: the system would have a
complete copy of the entire PLA as presented above and
new users would be prompted for their privacy preferences.
Once obtained, the user’s preferences and country would
be mapped to an initial selection of change sets. Thus, the

5

Figure 2. Change Sets and Relationships

use of change sets as opposed to variation points would be
transparent to the end user – only the legal and software
professionals need know its details.

From the initial selection of change sets, the system
would automate the process of selecting mapping change
sets and feature change sets as dictated by the system’s re-
lationships. To do so, the system could continually scan
through the relationships, selecting implied change sets and
unselecting excluded change sets for any relationship that
is violated until either one of two conditions occur. First,
if a configuration does not violate any relationships, then
a complete system matching the user’s privacy constraints
has been configured, which would then be instantiated for
the user. Otherwise, the system will eventually hit a vio-
lated variant relationship or revisit a previous selection of
change sets, indicating that a system cannot be composed,
e.g., because of a contradiction in the relationships.

The entire system, modeled intensionally, has a total of
14 change sets: 4 for user preferences, 3 for a user’s country,
2 for mappings between the two domains, and 5 for system
features. The model includes 15 relationships: 4 for inter-
dependencies between privacy constraints (Relationship 1,
4, 5, 8), 3 for interdependencies between architectural fea-
tures (Relationship 9, 10, 11), and the remaining 8 for map-
pings from the privacy domain to the software domain. We
note that the initial work of building the intensional model
is more involved as it models more domain concepts explic-
itly, but it enables a greater degree of separation between
both domain models and their interactions, making them
easier to interpret, evolve and maintain.

5 Evaluation

In this section, we evaluate both models in terms of
three scenarios that are likely to occur in the evolution of a

privacy-enhancing personalized system: First, a new law is
introduced that adds a new requirement not previously mod-
eled in either domain. Second, a software architect chooses
to modify their model by refactoring a feature. Third, a
law is modified so as to include additional countries, but
does not require or prohibit any new system features. Each
scenario modifies the systems that result from the previous
scenario, building on the previous scenarios’ modifications.

5.1 Scenario 1: Modifying Both Models

This scenario is based on a European Union (EU) Direc-
tive on Privacy and Electronic Communications (2002) [12]
mandating that tracking-based services require anonymiza-
tion or user’s consent. Anonymization of tracking affects
both domain models because neither currently captures
such a concept. We discuss updating the software model
and the privacy model for each approach.

5.1.1 Scenario 1: Extensional Model

To update the extensional PLA, we first focused on mod-
ifying the software model. To do so, we changed the
“Tracking-based Recommendations” component into an
optional-variant that contains an “Anonymous Tracking-
based Recommendations” variant that anonymizes the data
and an “Identifiable Tracking-based Recommendations”
variant that does not anonymize the data. The new com-
ponent is shown in Figure 3.

While the effort involved in the introduction of the new
variants was minimal, we ran into two limitations when try-
ing to assign them guards. First, the extensional model
disallows the calculation of intermediate values, such as
whether or not the user’s country is within the European
Union. As such, we had to treat the new anonymization con-
straint as if it were placed on each country within the Euro-

6

Figure 3. New Optional-Variant

pean Union individually, namely Germany and the UK. Sec-
ond, we found that we could not assign guards to the new
variants without considering the privacy constraints, which
are part of the privacy model, since these are directly rep-
resented in the guards. Instead, to assign Boolean guards
the architect and legal professionals would have to work to-
gether to ensure that both the privacy and software models
were correctly reflected in each guard.

The resulting extensional model contained one addi-
tional variable to express a user’s preference regarding
anonymization and two new, unique Boolean guards, one
for each new variant. The resulting model has 4 variables,
12 variation points, and 7 unique Boolean guards.

5.1.2 Scenario 1: Intensional Model

To update the intensional PLA, we again focused on up-
dating the software model first. We added a new change
set which replaces the “Tracking-based Recommendations”
component with a “Anonymous Tracking-based Recom-
mendations” component. This change set is shown in Fig-
ure 4. We then updated two relationships in the software
model to correctly integrate the new feature change set with
the other feature change sets.

Figure 4. New Change Set

To update the privacy model, we added 3 change sets
and 5 relationships. Of significance was the fact that we
could explicitly model the concept of being “In the Euro-
pean Union”. To do so, we created a “Country: Member of
the EU” change set and added a relationship implying that
this change set will be selected when users indicate that they
are in Germany or the UK.

For the intensional model, we added a total of 5 new
change sets and 9 relationships, we also modified 2 rela-
tionships within the software model.

5.1.3 Insights from Scenario 1

In this scenario, we found that we could express new con-
cepts in the intensional model (i.e., whether a country is
part of the EU) that we could not directly express in the
extensional model. We also note that updating the inten-
sional model involved more actual changes, but allowed us
to focus on smaller parts of the model while making those
changes, such as focusing on one domain model at a time.

5.2 Scenario 2: Modifying the Software
Model

In this scenario, the architect decided to refactor the
anonymization feature introduced in the previous scenario.
Instead of having two variants of the “Tracking-based
Recommendations” component (one with anonymization
and one without), the architect chose to utilize a single
“Tracking-based Recommendations” component and an op-
tional “Anonymization” component. This change was con-
ceptually confined to only the software model of the system.

5.2.1 Scenario 2: Extensional Model

To implement this architectural change, the architect re-
verted the optional-variant component back to an optional
component and added a new optional component, as shown
in Figure 5.

Figure 5. New Optional Component

Updating the model required making the structural
changes and then updating the guards. Again, we found
that we cannot assign guards without considering both do-
main models because they are intertwined. Additionally,
the guard for the “Anonymizer” component turned out to be
more complex than that of the “Tracking-based Recommen-
dations” component (shown in Section 3) because it had to
account for yet another preference variable. The guard for
the new link in Figure 5 was equally complex.

The resulting extensional model contained two new,
unique Boolean guards, however the two guards introduced
in the previous scenario were removed. The resulting model

7

has 4 variables, 13 variation points, and 7 unique Boolean
guards.

5.2.2 Scenario 2: Intensional Model

In comparison, to update the intensional model, we mod-
ified the change set introduced in the previous scenario to
that shown in Figure 6. These modifications were contained

Figure 6. Revised Change Set

within the single change set and so we did not need to con-
sider any other concepts modeled in the system, even the re-
lationships of the software model. Instead, we already knew
that the particular change set was included or excluded from
the model when appropriate.

5.2.3 Insights from Scenario 2

We found that, for the extensional model, the amount of
work involved was similar to that of the first scenario – each
guard had to be interpreted with only a few being updated,
and both domain models had to be considered when updat-
ing the guards. In contrast, the intensional model proved
far superior in this scenario. The feature was already rep-
resented using a change set, which was introduced in the
previous scenario. Thus, we did not have to examine any-
thing beyond the boundaries of that change set, instead we
simply modified the change set’s contents.

5.3. Scenario 3: Modifying the Privacy
Model

For the final scenario, we consider a change that is con-
fined to the privacy model. Here, we imagine that the Ger-
man privacy law that prohibits cross-site tracking has been
adopted by the European Union, making it applicable to all
of its constituent countries.

5.3.1 Scenario 3: Extensional Model

No structural modifications were necessary for the exten-
sional model, however a significant number of Boolean

guards had to be modified. In fact all Boolean guards
needed to be updated except for four. This was because
so many other optional parts of the extensional model need
to be present to utilize the “Cross-site Tracking” compo-
nent, such as the “Tracking-based Recommendations” and
“Anonymizer” components as well as the links and connec-
tors between them. Specifically, the guards of 9 different
variation points, consisting of 4 unique guards needed to be
updated. Though many guards were updated, the overall
number of variables, variation points and unique Boolean
guards of the resulting model remained the same.

5.3.2 Scenario 3: Intensional Model

To make this change in the intensional model, Relationship
4 from Figure 2 was duplicated and modified to reference
the “Country: Member of the EU” change set added in sce-
nario 1 rather than the “Country: Germany” change set.
While it would have been possible to simply modify Rela-
tionship 4 itself, we chose to duplicate it so that the privacy
model accurately reflects the fact that both Germany and
and the EU prohibit cross-site tracking without consent, in
case the laws change in the future.

5.3.3 Scenario 3: Insights

We found in this scenario that the extensional model had
to be significantly changed in order to reflect changes in
the privacy model. This is because the privacy model is
implicitly embedded through the extensional model at each
point of variation. In the intensional model, we found that
the graphical representation of relationships aided in iden-
tifying the specific relationship that we wanted to copy, we
simply looked at the relationships referencing the cross-site
tracking preference change sets.

6 Discussion

We observed a number of tradeoffs between the two ap-
proaches from our initial modeling of the systems in Sec-
tion 4 and the evolution scenarios in Section 5.

We found during the initial modeling and subsequent
modification of the intensional and extensional models that
introducing new concepts into the intensional model was
generally more tedious, but easier than introducing these
concepts in the extensional model. It was more tedious be-
cause, when compared to the Boolean guards in the exten-
sional model, relationships in the intensional model tended
to express small, individual dependencies. At the same
time, the intensional model captured a more complete spec-
ification (such as expressing whether a country is part of
the EU, in Scenario 1) of both domain models. As a result,
more change sets and relationships were necessary to model

8

the system. However, it was easier to model the concepts in
the intensional model for these same reasons: smaller, iso-
lated relationships were easier to express and the model was
capable of modeling the additional concepts needed. This
is as compared to the Boolean guards that were modeled in
the extensional approach. For the extensional model, it was
initially very difficult to determine how the relevant vari-
ables could be combined into single expressions and con-
cepts such as the existence of the EU could not be directly
modeled.

Even though the number of modeling constructs used in
the intensional model was greater, interpreting and verify-
ing the intensional model was significantly easier because
we were able to focus on smaller, more isolated concepts.
For instance, to verify that relationships captured the de-
sired concepts correctly, we were generally able to talk
through a logical argument. We did make a truth table for
Relationship 4 in Figure 2, which is perhaps the most unin-
tuitive relationship, but it was small. In contrast, to verify
that the Boolean expressions of the extensional model cap-
tured the desired concepts correctly, we had to create much
larger truth tables.

Since the intensional approach models domain concepts
explicitly and independently, it enables a better separation
of the domain models. The privacy model explicitly rep-
resents various privacy constraints and their interdependen-
cies. The software model explicitly represents architectural
features and their interdependencies. For example, in order
to implement the change introduced in Scenario 2, only the
change sets and relationships of the software model needed
to be examined and in turn only one change set needed to
be updated. On the other hand, implementing the change in
the extensional model involved both domain models as they
were entangled in the Boolean guard expressions.

The clearer separation of domains may also lead to a
better division of work. Law professionals can primarily
focus on the privacy model, while software architects can
largely focus on the system model. Only the mappings
from privacy constraints to architectural features demand
knowledge of both domains. For instance, in order to real-
ize the change introduced in Scenario 3 in the intensional
model, law professionals only needed to update a single re-
lationship in the privacy model without any involvement of
the software architects. In contrast, implementing the same
change in the extensional model required knowledge from
both domains. In future work, it will be useful to add sup-
port for grouping and categorizing change sets and relation-
ships according to their respective domain model.

7 Related Work

Our work is related to several different efforts. The field
of feature engineering has worked on modeling features and

their relationships for a number of years [15][3]. Recent
work has focused on modeling quality attributes in addi-
tion to functional features [11]. These usually stay at the
conceptual level, although some exceptions exist [26]. For
instance, Lago and Van Vliet built an extensive mapping
from conceptual features to architectural components [18]
and Niemelä et. al. present an approach for mapping qual-
ity attributes to architectural components [21]. We believe
that our work complements theirs by presenting a PLA ap-
proach that reduces the complexity of such mappings.

Our work is also related to other intensional versioning
approaches. AHEAD, an example of feature-oriented pro-
gramming [24], uses a compositional expression language
that can be generically mapped onto rules that govern the
underlying composition process [1] and has been applied to
PLAs. Similarly, our work is related to multi-dimensional
separation of concerns [22]. Here, change sets are close
to modules, and change set selection with our merge algo-
rithm, is close to a hypermodule. However, most research
in these areas has focused on the source code level.

Aspect-oriented programming [16] is also related to our
work. By their very nature, change sets are close to as-
pects in their compositional capabilities; in fact, one could
probably support the other and vice versa. However, com-
pared to aspects, our work has taken the generic change set
idea, modified it to support PLAs, and built enhanced sup-
port through detailed relationships.

In the field of privacy-enhanced technology, the Platform
for Privacy Preferences (P3P) [30] enables websites to ex-
press their privacy policies in a standard machine-reable for-
mat that can be retrieved automatically and interpreted by
user agents. Client-side agents can then inform users about
the sites’ privacy policies and warn them when those deviate
from their privacy preferences. However, P3P does not en-
force privacy policies nor does it support different policies
for different users. By itself, it is therefore not an answer
to the need for privacy tailored to different users’ privacy
constraints. In contrast, our PLA-based approaches can au-
tomatically generate a particular personalized system that
caters to each individual user’s privacy constraints.

8 Conclusions

This paper presents a detailed comparison between the
extensional and the intensional approach in modeling the
PLA variations for an example PEP system. We found that
when modeled in an extensional manner, the two domain
models of the PEP system become highly entangled and dif-
ficult to interpret or modify. This can become a significant
problem as each model may evolve independently, e.g., as
laws change (thus the privacy model changes) or new tech-
nologies became available for the system (thus the software
model changes). In contrast, we found evidence that al-

9

though the initial effort in creating the intensional model is
more involved as it models more domain concepts explic-
itly, the intensional model enables a greater degree of sep-
aration between both domain models and their interactions,
making each easier to interpret, evolve, and maintain.

9 Acknowledgement

This work is partially supported by NSF grant numbers
CCR-0093489, DUE-0536203, IIS-0205724, IIS-0308277
and a Google Research Award. We thank Eric Dashofy and
the SPLC09 reviewers for their insightful comments.

References

[1] D. Batory. Feature-oriented programming and the AHEAD
tool suite. In Proc. of the ICSE04, pages 702–703.

[2] Bell Labs Lucent Technologies. Sablime v5.0 user’s refer-
ence manual. Technical report, 1997.

[3] D. Beuche, H. Papajewski, and W. Schröder-Preikschat.
Variability management with feature models. In 1st Work-
shop on Softw. Variability Mgmt., pages 72–83, 2003.

[4] J. Bosch. Design and Use of Software Architectures: Adopt-
ing and Evolving a Product-Line Approach. Addison-
Wesley, 2000.

[5] R. Conradi and B. Westfechtel. Version models for soft-
ware configuration management. ACM Computing Surveys,
30(2):232–282, 1998.

[6] P. Consortium. Personalization & Privacy Survey, 2000.
[7] T. Cottenier, A. van den Berg, and T. Elrad. The motorola

WEAVR: Model weaving in a large industrial context. In
Proc. of Intl. Conf. on Aspect-Oriented Software Develop-
ment, 2006.

[8] E. Dashofy, A. van der Hoek, and R. N. Taylor. A compre-
hensive approach for the development of XML-based soft-
ware architecture description languages. ACM Trans. on
Softw. Eng. and Methodology, 14(2):199–245, 2005.

[9] DE-TML. German telemedia law. Technical report, 2007.
[10] J. Estublier, D. B. Leblang, G. Clemm, R. Conradi,

A. van der Hoek, W. Tichy, and D. Wiborg-Weber. Impact of
the research community on the field of software configura-
tion management. ACM Trans. on Softw. Eng. and Method-
ology, 14(4):383–430, 2005.

[11] L. Etxeberria, G. Sagardui, and L. Belategi. Modeling vari-
ation in quality attributes. In Proc. of the 1st Intl. Work-
shop on Variability Modelling of Software-intensive Sys-
tems, pages 51–59, 2007.

[12] EU. Directive 2002/58/ec on processing of personal data and
the protection of privacy in the electronic communications
sector. 2002.

[13] A. Garg, M. Critchlow, P. Chen, C. V. d. Westhuizen, and
A. v. d. Hoek. An environment for managing evolving prod-
uct line architectures. In Proc. of the Intl. Conf. on Software
Maintenance, pages 358–367, 2003.

[14] S. A. Hendrickson and A. van der Hoek. Modeling product
line architectures through change sets and relationships. In
Proc. of the ICSE07, pages 189–198.

[15] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical CMU/SEI-90-TR-21, Software
Engineering Institute, November 1990.

[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In Proc. of the 11th European Conf. on Object-
Oriented Prog., pages 220–242, 1997.

[17] A. Kobsa. Privacy-enhanced personalization. Communica-
tions of the ACM, 50(8):24–33, 2007.

[18] P. Lago, E. Niemelä, and H. van Vliet. Tool support for
traceable product evolution. In Proc. of the 8th European
Conf. on Software Maintenance and Reengineering, pages
261–269, 2004.

[19] N. Medvidovic and R. N. Taylor. A classification and com-
parison framework for software architecture description lan-
guages. IEEE Trans. on Softw. Eng., 26(1):70–93, 2000.

[20] T. Mens. A state-of-the-art survey on software merging.
IEEE Trans. on Softw. Eng., 28(5):449–462, 2002.

[21] E. Niemelä, A. Evesti, and P. Savolainen. Modeling quality
attribute variability. In Proc. of the 3rd Intl. Conf. on Eval-
uation of Novel Approaches to Softw. Eng., pages 169–176,
2008.

[22] W. H. Peri Tarr, Harold Ossher and S. M. S. Jr. N degrees
of separation: Multi-dimensional separation of concerns. In
Proc. of the ICSE99, pages 16–22.

[23] D. E. Perry and A. L. Wolf. Foundations for the study of
software architecture. ACM SIGSOFT Softw. Eng. Notes,
17(4):40–52, 1992.

[24] C. Prehofer. Feature-oriented programming: A fresh look
at objects. In Proc. of the 11th European Conf. on Object-
Oriented Prog., pages 419–443, 1997.

[25] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COV-
AMOF: A framework for modeling variability in software
product families. In Proc. of the SPLC04, pages 197–213.

[26] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf. A
conceptual basis for feature engineering. Journal of Systems
and Software, 49(1):3–15, 1999.

[27] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee. The Koala component model for consumer elec-
tronics software. Computer, 33(3):78–85, 2000.

[28] Y. Wang and A. Kobsa. Impacts of privacy laws and regu-
lations on personalized systems. In A. Kobsa, R. K. Chel-
lappa, and S. Spiekermann, editors, PEP06: Workshop on
Privacy-Enhanced Personalization, pages 44–46.

[29] Y. Wang, A. Kobsa, A. van der Hoek, and J. White. PLA-
based runtime dynamism in support of privacy-enhanced
web personalization. In Proc. of the SPLC06, pages 151–
162.

[30] R. Wenning and M. Schunter, editors. The Platform for Pri-
vacy Preferences 1.1 (P3P1.1) Specification. W3C Working
Group Note, 2006.

10

